FERRITES

Ferrite magnets are brown ceramics, manufactured using the powder metallurgy process: pressing and sintering. Density 4.8.

Magnetic force is optimal when the magnet is in contact with a mild steel frame, flat, clean and rather thick. It is lower with allied steels and cast iron (less 30% for cast iron).

▶ It is lower in presence of an air gap (space between the part to magnetize and the polar face of the magnet).

It is decreasing by 0.4% every degree C (see besides curve).

INDUCTION ON SURFACE

► The maximum value of induction in surface at 20°C is about 1500 Gauss for Ferrite flat pot magnets and blocks.

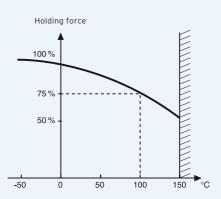
► This value is decreasing by 0.2% every degree C, when temperature is increasing.

MECHANICAL RESISTANCE

- > These ceramics are very fragile and offer little resistance to shocks.
- They must be handled carefully.

► To avoid magnets attraction during handling we advise to put them on a mild steel plate.

Do not shock or squeeze.


RESISTANCE TO CHEMICALS

Ferrite magnets are rustproof.

RESISTANCE TO TEMPERATURE

Induction losses are reversible so far we stay in the limit of working temperature of the material.

> This is the family of magnets with the best energy/cost ratio.

Their remanent induction is low but the coercive field remains high.

The catalogue shows an isotropic and anisotropic ferrite grade.

Grades	9A	5B
Br Typical (T)	0,215	0,416
Hcb Typical (kA/m)	139	267
Hcj Typical (kA/m)	226	277
BH max Typical (kJ/m ³)	8,2	32

